

CS18FS3216W CS16FS3216W

Rev. 2.0

Revision History

<u>Rev. No.</u>	History	<u>Issue Date</u>
1.0	Initial issue	Apr.26,2017
2.0	Revise "Chiplus reserves the right to change product or	Nov. 8, 2021
	specification without notice" to "Chiplus reserves the right to	
	change product or specification after approving by customer."	

CS18FS3216W CS16FS3216W

GENERAL DESCRIPTION

The CS18FS3216W and CS16FS3216W are a 33,578,432-bit high-speed Static Random Access Memory organized as 4M(2M) words by 8(16) bits. The CS18FS3216W (CS16FS3216W) uses 8(16) common input and output lines and have an output enable pin which operates faster than address access time at read cycle, And CS16FS3216W allows that lower and upper byte access by data byte control(\overline{UB} , \overline{LB}). The device is fabricated using advanced CMOS process,6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The CS18FS3216W and CS16FS3216W are packaged in 48 TFBGA.

FEATURES

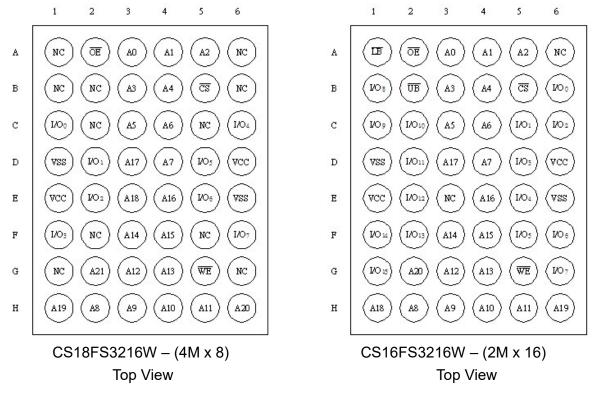
- Fast Access Time 10,15ns(Max)
- CMOS Low Power Dissipation Standby (TTL) : 70mA (Max.) (CMOS) : 55mA (Max.) Operating : 120mA (10ns, Max.)
 - : 100mA (15ns , Max.)
- Wide range of Power Supply
 - CSXXFS3216W: 1.65V~3.6V Power Supply:
- TTL Compatible inputs and Outputs
- Fully Static Operation, No Clock or Refresh required
- Three State Outputs
- Data Byte Control(x16 Mode)

 \overline{LB} : I/O₀~I/O₇, \overline{UB} : I/O₈~I/O₁₅

- Standard 48 TFBGA Package Pin Configurations
- ROHS compliant
- Operating in Commercial and Industrial Temperature range.

2

CS18FS3216W CS16FS3216W

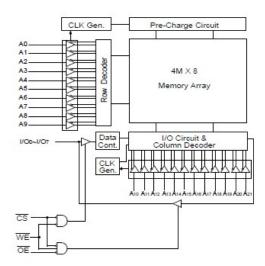

Order Information

Donaity	nsity Org.	a. Part Number	V _{cc} (V)	Spe	eed	Paakaga	Tomp	
Density Org.		vcc(v)	t _{AA} (ns)	t _{OE} (ns)	Package	Temp.		
	41420	CC40EC224CM(LC/I) 40*	2.5~3.3	10	5			
22146	4Mx8	CS18FS3216WHC(I)-10*	1.8	1.8	15	7		C : Commercial
32Mb	014-46		2.5~3.3	10	5	48 TFBGA	I : Industrial	
	2Mx16 C	CS16FS3216WHC(I)-10*	1.8	15	7			

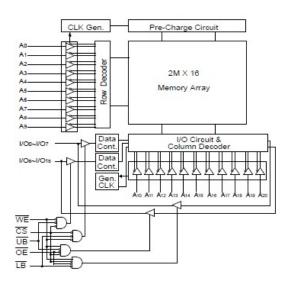
*means max. speed

PIN CONFIGURATIONS

6x8mm TFBGA with ball pitch 0.75mm



3



CS18FS3216W CS16FS3216W

FUNCTIONAL BLOCK DIAGRAM

CS18FS3216W- (4M x 8)

CS16FS3216W - (2M x 16)

Absolute Maximum Ratings*

Paramet	er	Symbol	Rating	Unit
Voltage on Any Pin Relativ	e to Vss	Vin, VOUT	-0.5 to Vcc+0.5V	V
Voltage on V _{CC} Supply		Vin, VOUT	-0.5 to 4.6	V
Power Dissipation		PD	1.0	W
Storage Temperature		Tstg	-65 to 150	°C
Operating Temperature	Commercial	TA	0 to 70	°C
Operating Temperature	Industrial	TA	-40 to 85	°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect reliability.

4

CS18FS3216W CS16FS3216W

Parameter	Operating Vcc(V)	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	2.4~3.6	Vcc	2.4	2.5/3.3	3.6	v
Supply Voltage	1.65~2.2	Vcc	1.65	1.8	2.2	
Ground		Vss	0	0	0	V
Input High Voltage	2.4~3.6	Vih	2.0	-	V _{CC} +0.3	v
Input High Voltage	1.65~2.2	Vін	1.4	-	Vcc+0.2	
Input Low Voltage	2.4~3.6	VIL	-0.3	-	0.7	v
Input Low Voltage	1.65~2.2	VIL	-0.3	-	0.4	V

Recommended DC Operating Conditions*($T_A=0$ to $70^{\circ}C$)

*The above parameters are also guaranteed for industrial temperature range.

DC and Operating Characteristics*($T_A=0$ to 70° C)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	ILI	$V_{IN}=V_{SS}$ to V_{CC}	-2	2	uA	
Output Leakage Current	Ilo	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$ $V_{OUT} = V_{SS} \text{ to } V_{CC}$	-2	2	uA	
Operating	lcc	Min.Cycle,100% Duty	10ns	-	120	mA
Current		$\overline{CS} = V_{IL}, V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 0 \text{ mA}$			100	
Standby	Isb	Min. Cycle, $\overline{CS} = V_{IH}$		-	70	mA
Current	Isb1	f=0MHz, \overline{CS} ≥V _{CC} -0.2V, V _{IN} ≥V _{CC} -0.2V or V _{in} ≦	0.2V	-	55	
Output Low		V_{CC} =3.0V, I_{OL} =8mA,(Case of Typical Vcc=3.3V	')	-	0.4	
Output Low	Vol	V_{CC} =2.4V, I _{OL} =1mA, (Case of Typical Vcc=2.5V	')	-	0.4	V
Voltage Level		V _{CC} =1.65V, I _{OL} =0.1mA,(Case of Typical Vcc=1.	8V)	-	0.2	
Output High	V _{OH}	V _{CC} =3.0V, I _{OH} =4mA,(Case of Typical Vcc=3.3V	/)	2.4	-	V

Chiplus reserves the right to change product or specification after approving by customer.

Rev. 2.0

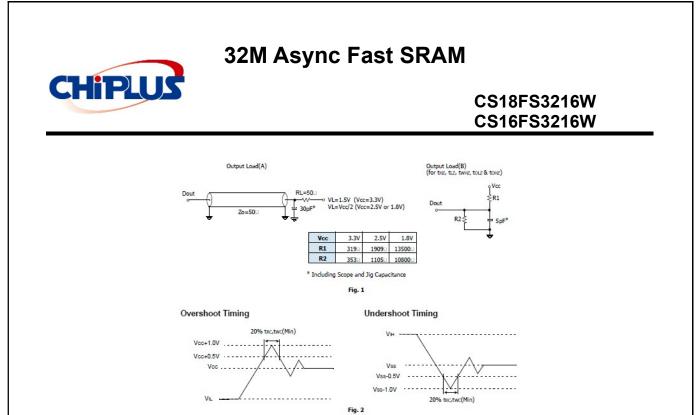
CS18FS3216W CS16FS3216W

Voltage Level	V _{CC} =2.4V, I _{OH} =1mA,(Case of Typical Vcc=2.5V)	2.4	-	
	V_{CC} =1.65V, I _{OL} =0.1mA,(Case of Typical Vcc=1.8V)	1.8	-	

*The above parameters are also guarantee for industrial temperature range.

Capacitance*(T_A = 25°C, f= 1.0MHz)

Item	Symbol	Test Conditions	TYP	Max	Unit
Input/ Output Capacitance	Cı/o	V _{I/O} =0V	-	12	pF
Input Capacitance	CIN	V _{IN} =0V	-	10	pF


*Capacitance is sampled and not 100% tested.

Test Conditions*

Parameter	Value			
	0 to 3.0V (Vcc=3.3V)			
Input/ Output Capacitance	0 to 2.5V (Vcc=2.5V)			
	0 to 1.8V (Vcc=1.8V)			
Input Rise and Fall Time	1V/1ns			
Input and Output Timing Pafaranaa Lavala	1.5V (Vcc=3.3V)			
Input and Output Timing Reference Levels	1/2Vcc (Vcc= 1.8V or 2.5V)			
Output Load	See Fig. 1			

*The above parameters are also guaranteed for industrial temperature range.

Rev. 2.0

Functional Description (x8 Mode)

\overline{CS}	WE	\overline{OE}	Mode	I/O Pin	Supply Current
Н	Х	X*	Not Select	High-Z	ISB,ISB1
L	Н	Н	Output Disable	High-Z	Icc
L	Н	L	Read	Dout	lcc
L	L	Х	Write	Din	lcc

*X means don't care

Functional Description (x16 Mode)

\overline{CS}	WE	\overline{OE}	\overline{LB} **	\overline{UB} **	Mode	I/O I	⊃in	Supply
CS	<i>""</i>	0L	LD	0D		I/O ₀ ~I/O ₇	I/O ₈ ~I/O ₁₅	Current
Н	Х	Х*	Х	Х	Not Select	High-Z	High-Z	Isb, Isb1
L	Н	Н	Х	Х	Output	Lligh 7	Lligh 7	l
L	Х	Х	Н	Н	Disable	High-Z	High-Z	lcc
		1	L	Н	Deed	Dout	High-Z	I
	Н	L	Н	L	Read	High-Z	Dout	lcc

7

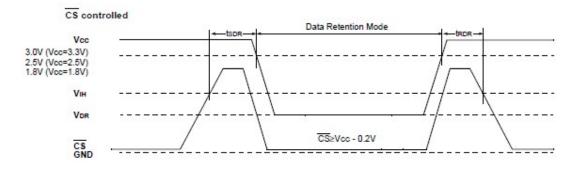
Rev. 2.0

CS18FS3216W CS16FS3216W

			L	L		Dout	Dout	
			L	Н		Din	High-Z	
L	L	Х	Н	L	Write	High-Z	Din	lcc
			L	L		Din	Din	

*X means don't care

Data Retention Characteristics*($T_A=0$ to $70^{\circ}C$)


Parameter	Operating V _{cc} (V)	Symbol	Test Condition	Min.	Тур.	Max.	Unit
V _{CC} for	2.4V~3.6V	\/		2.0	-	3.6	V
Data Retention	1.65V~2.2V	Vdr	<i>CS</i> ≥V _{CC} - 0.2V	1.5	-	3.6	V
Data Retention Current	2.4V~3.6V 1.65V~2.2V	ldr	$V_{CC}=2.0V$ $\overline{CS} \geq V_{CC} - 0.2V$ $V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V$ $V_{CC}=1.5V$ $\overline{CS} \geq V_{CC} - 0.2V$ $V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V$			55 55	mA
Data Retention S	et-Up Time	t _{SDR}	See Data Retention Wave	0			ns
Recovery Time	9	t _{RDR}	form (below)	5			ms

Data Retention Wave form

Rev. 2.0

CS18FS3216W CS16FS3216W

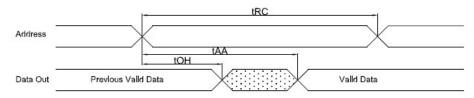
Read Cycle*

Parameter	Symbol	10ns		15ns		Linit
		Min	Max	Min	Max	Unit
Read Cycle Time	t _{RC}	10	-	15	-	ns
Address Access Time	taa	-	10	-	15-	ns
Chip Select to Output	tco	-	10	-	15	ns
Output Enable to Valid Output	t _{OE}	-	5	-	7	ns
\overline{UB} , \overline{LB} Access Time**	t _{BA}	-	5	-	7	ns
Chip Enable to Low-Z Output	t∟z	3	-	3	-	ns
Output Enable to Low-Z Output	tolz	0	-	0	-	ns
\overline{UB} , \overline{LB} Enable to Low-Z Output**	t _{BLZ}	0	-	0	-	ns
Chip Disable to High-Z Output	t _{HZ}	0	5	0	7	ns
Output Disable to High-Z Output	tонz	0	5	0	7	ns
\overline{UB} , \overline{LB} Disable to High-Z Output**	tвнz	0	5	0	7	ns
Output Hold from Address Change	t _{он}	3	-	3	-	ns
Chip Selection Power Up Time	tPU	0	-	0	-	ns
Chip Selection Power Down Time	t _{PD}	-	10	-	15	ns

Rev. 2.0

CS18FS3216W CS16FS3216W

*The above parameters are also guaranteed for industrial temperature range.

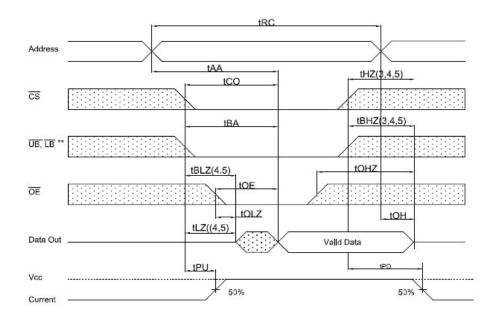

Write Cycle*

Parameter	Symbol	10ns		15ns		Unit
		Min	Max	Min	Max	Unit
Write Cycle Time	twc	10	-	15	-	ns
Chip Select to End of Write	tcw	7	-	12	-	ns
Address Set-up Time	t _{AS}	0	-	0	-	ns
Address Valid to End of Write	taw	7	-	12	-	ns
Write Pulse Width(\overline{OE} High)	twp	7	-	12	-	ns
Write Pulse Width(\overline{OE} Low)	twP1	10	-	15	-	ns
\overline{UB} , \overline{LB} Valid to End of Write**	tвw	7	-	12	-	ns
Write Recovery Time	t _{wR}	0	-	0	-	ns
Write to Output High-Z	twнz	0	5	0	7	ns
Data to Write Time Overlap	tow	5	-	8	-	ns
Data Hold from Write Time	t _{DH}	0	-	0	-	ns
End of Write to Output Low-Z	tow	3	-	3	-	ns

*The above parameters are also guaranteed for industrial temperature range.

Timing Diagram

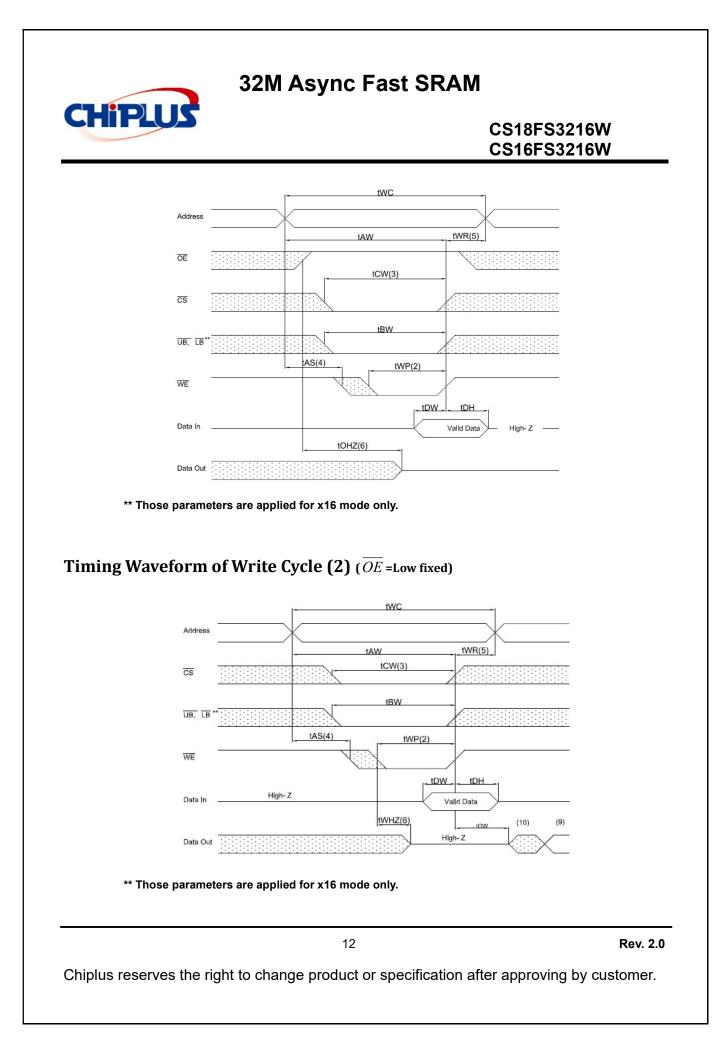
Timing Waveform of Read Cycle (1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$, \overline{UB} , $\overline{LB} = V_{IL}^{*}$)



** Those parameters are applied for x16 mode only.

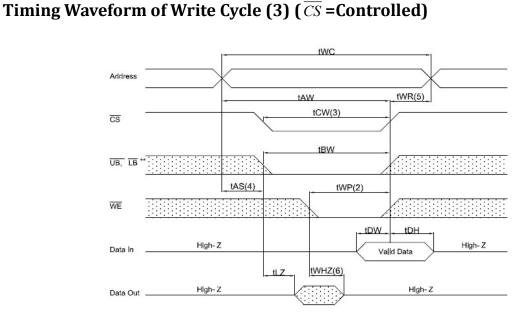
Timing Waveform of Read Cycle (2) (\overline{WE} =VIH)

CS18FS3216W CS16FS3216W

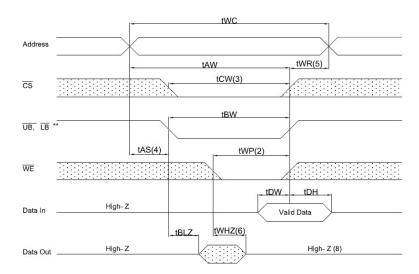


NOTES (Read Cycle)

- 1. WE is high for read cycle
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V_{OH} or V_{OL} levels.
- At any given temperature and voltage condition, t_{HZ} (Max.) is less than t_{LZ} (Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with $\overline{CS} = V_{IL}$.
- 7. Address valid prior to coincident with CS transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- ** Those parameters are applied for x16 mode only.


Timing Waveform of Write Cycle (1) (\overline{OE} Clock)

11



CS18FS3216W CS16FS3216W

** Those parameters are applied for x16 mode only.

Timing Waveform of Write Cycle (4) (\overline{UB} , \overline{LB} **Controlled)**

NOTES (Write Cycle)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low \overline{CS} , \overline{WE} , \overline{LB} and \overline{UB} . A write begins at the latest transition

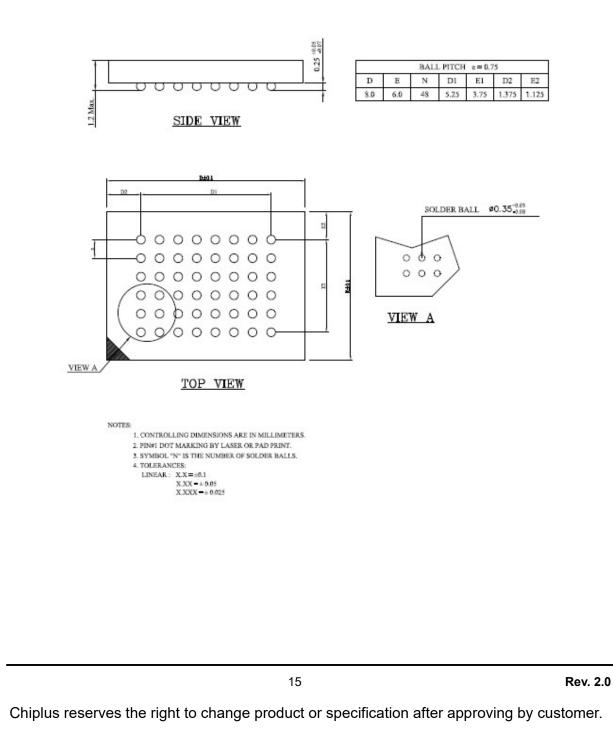
CS18FS3216W CS16FS3216W

Rev. 2.0

 \overline{CS} going low and \overline{WE} going low ;

A write ends at the earliest transition \overline{CS} going high or \overline{WE} going high. twp is measured from the beginning of write to the end of write.

- 3. t_{CW} is measured from the later of \overline{CS} going low to end of write.
- 4. t_{AS} is measured from the address valid to the beginning of write.
- 5. WE is measured from the end of write to the address change. t_{WR} applied in case a write ends as CS or \overline{WE} going high.
- 6. If *OE*, *CS* and *WE* are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If \overline{CS} goes low simultaneously with \overline{WE} going or after WE going low, the outputs remain high impedance state.
- 9. D_{OUT} is the read data of the new address.
- 10. When \overline{CS} is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.


** Those parameters are applied for x16 mode only

CS18FS3216W CS16FS3216W

Package outline dimensions

48ball TFBGA-6x8mm (ball pitch: 0.75mm)

